

 1

SoftwareSoftware

MaintenanceMaintenance

byby
Manik Chand PatnaikManik Chand Patnaik

2Manik Chand Patnaik, RIT.

Software maintenanceSoftware maintenance

� Software maintenance is an important
activity for many organizations.

� It is about modifications to a software
product after it has been delivered to the
customer.

3Manik Chand Patnaik, RIT.

Where Maintenance is Needed?Where Maintenance is Needed?

� Maintenance is inevitable for almost any
kind of product.

� Most products need maintenance: due to
wear and tear caused by use. But Software
products do not need maintenance on this
count.

� Software products are maintained to make
them fit for new kind of usage and to
enhance their usability.

4Manik Chand Patnaik, RIT.

Which software is Maintained?Which software is Maintained?

� Many people think only bad software
products need maintenance.

� The opposite is true:

� bad products are thrown away,

� good products are maintained and used for a
long time.

� There will always be a lot of old software
needing maintenance.

5Manik Chand Patnaik, RIT.

Kinds of MaintenanceKinds of Maintenance

� There are 3 kinds of software Maintenance :-

� corrective

� adaptive

� perfective

6Manik Chand Patnaik, RIT.

Corrective MaintenanceCorrective Maintenance

� Corrective maintenance of a software
product is done :-

� to correct bugs observed while the system is
in use.

� to enhance performance of the product.

7Manik Chand Patnaik, RIT.

Adaptive MaintenanceAdaptive Maintenance

� When customers require a software product
to work in

� A new hardware platform

� A different Operating System

� Collaboration with an other software

� Or in a new context

� Than it needs to adopt to the new
environment.

� There is need for the product to interface
with new hardware or software or both.

8Manik Chand Patnaik, RIT.

Perfective MaintenancePerfective Maintenance

� Perfective maintenance is required :-

� to support new features required by users.

� to change some functionality of the system
due suit to customer demands.

� Ultimately to make the system perfect for
use.

9Manik Chand Patnaik, RIT.

Maintenance Effort distributionMaintenance Effort distribution

� Corrective 20%

� Adaptive 28%

� Perfective 50%

10Manik Chand Patnaik, RIT.

Software Maintenance andSoftware Maintenance and

Software EvolutionSoftware Evolution

� Every software product continues to evolve

� through maintenance efforts.

� Larger software products stay in operation
for longer time

� because of high replacement costs.

11Manik Chand Patnaik, RIT.

Laws of Maintenance >Laws of Maintenance >

� Lehman's first Law

� �Software products must change
continuously, or become progressively less
useful.�

� Lehman�s Second Law

� �When software is maintained, its structure
degrades unless active efforts are made to
avoid this phenomenon.�

12Manik Chand Patnaik, RIT.

Click to add titleClick to add title

� Lehman�s Third Law

� �Over a program�s life time, its rate of
development is approximately constant.�

� Other Maintenance Laws :-

� All large programs will undergo significant
changes during operation phase of their life
cycle, regardless of apriori intentions.

13Manik Chand Patnaik, RIT.

Legacy Code and Maintenance >Legacy Code and Maintenance >

� It is old code, may be Unstructured code

� Maintenance programmers have:

� insufficient knowledge of the system or the
application domain.

� Because the new Maintenance team is
usually different from the development team.

14Manik Chand Patnaik, RIT.

Click to add titleClick to add title

� Documentation may be absent / out of date /
insufficient.

� even after reading all documents it is very
difficult to understand why a thing was done
in a certain way.

� there is a limit to the rate at which a person
can study documentation and extract relevant
information

15Manik Chand Patnaik, RIT.

What makes What makes

maintenance difficult?maintenance difficult?

� Use of goto

� Lengthy procedures

� Poor and inconsistent naming

� Poor module structure

� Weak cohesion and high coupling

� Deeply nested conditional statements

� Functions having side effects (remember
global modifications?)

 16

Reverse EngineeringReverse Engineering
& Re-engineering& Re-engineering

byby
Manik Chand PatnaikManik Chand Patnaik

17Manik Chand Patnaik, RIT.

Reverse EngineeringReverse Engineering

� Reverse engineering is an important
maintenance technique :-

� To recover the design and the requirements
specification by analyzing a program code.

� It is required because :-

� several existing software products are
unstructured, lack proper documentation,
were not developed using software
engineering principles.

18Manik Chand Patnaik, RIT.

Step - 1Step - 1

� First carry out cosmetic changes to the code
to improve:

� readability,

� structure,

� understandability.

Reformat Program
Assign Meaningful

Names

Simplify Conditions

Replace GOTOs
Simplify

Processing

19Manik Chand Patnaik, RIT.

Details ofDetails of

Cosmetic ChangesCosmetic Changes

� Reformat the program:

� use any pretty printer program

� layout the program neatly.

� Give more meaningful names to variables,
data structures, and functions.

� Replace complex and nested conditional
expressions:

� simpler conditional statements

� whenever appropriate use case statements.

20Manik Chand Patnaik, RIT.

Other stepsOther steps

� In order to extract the design fully
understanding the code is required.

� Automatic tools can be used to help derive
data flow and control flow diagrams from the
code.

� Structure chart is extracted by
understanding module invocation sequence
and data interchange among modules.

� Requirements specification is extracted by
understanding what the code does.

21Manik Chand Patnaik, RIT.

Software Re-engineeringSoftware Re-engineering

� Re-engineering is a reverse engineering
cycle followed by a forward engineering
cycle with as much reuse as possible from
existing code and other documents.

22Manik Chand Patnaik, RIT.

When applicable?When applicable?

� Preferable when:

� amount of rework is significant

� software has poor structure.

� product exhibits high failure rate.

� product difficult to understand.

23Manik Chand Patnaik, RIT.

Which software requires it?Which software requires it?

� Most old and legacy applications

� Very large applications being used since
long whose maintainability has decreased
because of rampant patching.

24Manik Chand Patnaik, RIT.

Steps >Steps >

� Step 1 Reverse Engineering

� The old code is analyzed (abstracted) to
extract the module specifications.

� The module specifications are analyzed to
produce the design.

� The design is analyzed (abstracted) to
produce the original requirements
specification.

25Manik Chand Patnaik, RIT.

StepsSteps

� Step 2 Preparation of New SRS

� The change requests are then applied to the
requirements specification to arrive at the
new requirements specification.

� Step 3 Forward Engineering

� Done by adopting software engineering
principles rigorously

26Manik Chand Patnaik, RIT.

Re-engineering process modelRe-engineering process model

Change Requirements

Requirements Specification New Requirements Specification

Design

Code

Design

Code

Reverse Engineering Forward Engineering

27Manik Chand Patnaik, RIT.

AdvantagesAdvantages

� produces better design than the original
product,

� produces required documents,

� often results in higher efficiency.

� Efficiency improvements are brought about
by better design.

� However, this approach is more costly than
ordinary maintenance.

28Manik Chand Patnaik, RIT.

Finally,Finally,

There

Is

no

End

