‘.\s'l‘.\x'l‘.\x'l‘.\x'/"

“Sbﬂ:&‘f

\\'/‘\N'/‘.\\

ﬁ;ﬁnﬁman%

’rf",&’rf",&’r{,w’r{,w’r{,w;‘}",x;‘}",x g,@ g &g &g E g,@‘q,@
@"' @' ;;g A ."' & & & @’ = 7 7 = = -
‘L QﬁWQIQq, 0 q | R
A" A R, / R, g . .
RNE Ty 3% ance 1s an important
e organizations.
ut modifications to a software
product after it has been delivered to the
customer.
2000 2000
e e
L} L}
Manik Chand Patnaik, RIT. 2
'/ ‘ s siale Ty b ol A ol N B S [SR '/ Sl 3
Wheére: M%lﬂte'ﬁa@m? 19 Nﬁgﬂe&? software is
c‘_‘-\‘_g,c‘ & & | R S Lk LR B g E
inevitable for almost any hink only bad software
ducts need maintenance: due to
wear and tear caused by use. But Softwalfe - bad products are thrown away,
products do not need maintenance on this g
count. = good products are maintained and used for a
< g 4t long time.
* Software products are maintained to: .
them fit for new kind of usage g Egggfnmrﬂafégi};sn?ee a lot of old scﬁt g
. 1 —H i NEmw
enhance their usability. g
Manik Chand Patnaik, RIT. " 3 Manik Chand Patnaik, RIT. " 4
'I‘.\N'l‘.\x'l‘.\x'l‘.\s"*“\N'l‘.\x'l‘.\x 'I‘.\x'l‘.\sl‘.\ ‘\/‘.\x'l‘.\s'l‘.\\
- “Kinds of ﬁ[ﬁnﬁnan&‘gf A & Ko "ﬁﬁrré%ﬁve%iﬁemaﬁce Py
c‘_g,c"g,c"g,c‘:_ 4_-\‘_g,@‘g,@ ElgElgElgElgElgELG
of software Maintenance :- enance of a software
bugs observed while the system is
: in use.
- perfective
» to enhance performance of the product.
e e
L 3 L 3
o o
[] 2000 [] 2000
e e
Manik Chand Patnaik, RIT. L 5 Manik Chand Patnaik, RIT. L 6

ol il “\“'/K-\“"K\“

‘*Adaﬁﬁim Mn&n&n‘%g
& i“ g g i“ 9 i“

quire a software product

LRI TR T N

w features required by users.

dware platform ge some functionality of the system
« A different Operating System due suit to customer demands.
» Collaboration with an other software « Ultimately to make the system perfect for
» Or in a new context —
- Than it needs to adopt to the s000 g s000
environment. t = F{E:
» There is need for the product to inter
with new hardware or software or both. * »
Manik Chand Patnaik, RIT. L 7 Manik Chand Patnaik, RIT. 8 8
N R W Tl 1y oLy T T R 7
% % ' "Sof ai'é Mainte hesa d o,
Maﬂm&m lfmm; disteibution ¢ SR Mty “{} e
(‘“{g,(“f IR {g,@‘ gﬂ-’wa;@”lifvghi Q,De“jg,@“
uct continues to evolve
nance efforts
ware products stay in operation
for longer time
= because of high replacement costs.
2000
i
Manik Chand Patnaik, RIT. Manik Chand Patnaik, RIT. 8 10
y ‘ Gy ‘ Tl ‘ n fy ol iy o Ny 0 1y sl Pl fy Pl
Maintenance > - T & T 6 Cﬁgk t&‘mldﬁﬂe e &
YR B SR B S Y i‘.‘-‘.‘» g,i‘“f L TR B B g,i‘“f g,i“ {
products must change ram’s life time, its rate of
y, or become progressively less t is approximately constant.”
useful. - Other Maintenance Laws :-
« Lehman’s Second Law d e
« All large programs will undergo significant
+ “When software is maintained, its structure changes during operation phase of their life
degrades unless active efforts are ngad cycle, regardless of apriori intentions. :
avoid this phenomenon.” N g2 .- g2
i NEmw i NEmw
Manik Chand Patnaik, RIT. 8 11 Manik Chand Patnaik, RIT. 8 12

“Legdcy Céde afid Maintertance >

g &4 g & ¢ &

code, may be Unstructured code
« Maintenance programmers have:

« insufficient knowledge of the system or the
application domain.

* Because the new Maintenance team is
usually different from the development team.

Manik Chand Patnaik, RIT. 13

‘Click t8 add'title * %

g &l g &l g &l g &l g&EL g

tation may be absent / out of date /
1nsufﬁ01ent

« even after reading all documents it is very
difficult to understand why a thing was done
in a certain way.

- there is a limit to the rate at which a person
can study documentation and extract relevant

information
'ﬁ?"
-
-

[}
-

Manik Chand Patnaik, RIT. 14

" Whatanakes ™ & 4
maintenance difficult?

- Lengthy procedures

« Poor and inconsistent naming

» Poor module structure

» Weak cohesion and high coupling

- Deeply nested conditional statements

« Functions having side effects (re
global modifications?) '

aseee

Manik Chand Patnaik, RIT. 15

'i\‘\\ 'i\‘\\ 'i\‘\\ 'i\‘\\ 'i\‘\\ 'i\‘\\ 'i\‘\x

e &
" ;Keml%e@Engmeeﬁng &

y \‘ I iy & Re-énmEﬁnq Ty \‘ \x’
ti“g,ti“ ti“g,ti“ ti“ ti“g,ti“g

'i\‘ P 'i\(P 'i\(NG fhy\-. fy .\-. 'i\(P 'i\(s
‘?}f f‘?;(‘ tkCﬂand l%tnail? y e e &

,ti.%“_ g,ti&"‘_ g,ti“ g,ti“ g,ti“_ g,ti“_ g,ti“ d

i

aee

“ Reverse Engineering «

g &l g &l ¢ &l g8

engineering is an important
maintenance technique :-

To recover the design and the requirements
specification by analyzing a program code.

It is required because :-

several existing software products are
unstructured, lack proper documenta
were not developed using soff
engineering principles. ®

aseee

Manik Chand Patnaik, RIT. 17

to improve:

= readability: Reformat Program =
* structure,
- understandability.

Manik Chand Patnaik, RIT. 18

fy ol 7y il /‘ ol /‘\~'7~‘—\~
s?; 2 % 2 Deﬂﬂé&fg W ,@.6 !

e ¢ f@smqm cbamgg,sqcf (&

. q

printer program
e program neatly.

« Give more meaningful names to variables,
data structures, and functions.

- Replace complex and nested conchtlonal
expressions: H 2000

=

» simpler conditional statements o

* whenever appropriate use case stateme

e

Manik Chand Patnaik, RIT. 19

s Lo My s

1) ‘ A
S

W,

112

T ’;‘ T ’;‘ S N '/‘\xé
ST & et steps”
P ORP ey nrs HE P

&

Py
A @

$ &

xtract the design fully
e code is required.

c tools can be used to help derive
data flow and control flow diagrams from the
code.

« Structure chart is extracted by
understanding module invocation se«:ue e
and data interchange among modules.

- Requirements specification is extra
understanding what the code does.

Manik Chand Patnaik, RIT. 20

'/ ~‘ wle fy Tl TR I R '/ ‘ Tl
T ® Q‘thwirs K%;éngi;reeﬁnf &
s ot gty s ,

R g,c»

({»_.

a reverse engineering
by a forward engineering
s much reuse as possible from
existing code and other documents.

Manik Chand Patnaik, RIT. 21

o Pl iy L
3 e

} @
% I‘J ¢
are has poor structure.
» product exhibits high failure rate.
« product difficult to understand.
2000
-ims
Manik Chand Patnaik, RIT. 8 22

‘\s'l“.\s'/‘\s' .\s'/‘.\s'/‘\s'l‘\s

@.vﬁﬁch %pnw%re réquires it?2" ¢
c»&‘g,c»“q,c»\ ~°“g,c~°‘g,c~°‘g,c~‘

y applications

plications being used since
ose maintainability has decreased
because of rampant patching.

9900

b
I
T

Manik Chand Patnaik, RIT. 23

'/ ‘)) ‘)) ‘)) ‘)) ‘)) ‘)) ‘ Tl

e - K L o - -

e e Tsbps>T ¢ T e T e
‘g,c»“g,c»“g,c»“_g,c»‘_ ‘g,@?-‘_

gineering

is analyzed (abstracted) to
e module specifications.

« The module specifications are analyzed to
produce the design.

« The design is analyzed (abstracted) to

produce the original requirements
specification. I8 s000
i NEmw
Manik Chand Patnaik, RIT. L 24

-

reparation of New SRS

« The change requests are then applied to the
requirements specification to arrive at the
new requirements specification.

- Step 3 Forward Engineering

- Done by adopting software engineering
principles rigorously

i

Manik Chand Patnaik, RIT. 25

¥ .Re-‘él‘lgil‘r"géﬁﬂ}g. prdi:éss ‘ﬁiodéi .

-3

Change Requirements

New Requirements Specification

1
1
1
1
] !

1

[oesion __HEll Desion [
1

t | -
[coce JMNl Coe [
1

1

1

1

1

o

Manik Chand Patnaik, RIT. 26

p s better design than the original
product,

produces required documents,

often results in higher efficiency.

Efficiency improvements are brought about
by better design.

However, this approach is more costl
(3

ordinary maintenance. é
e

aseee

Manik Chand Patnaik, RIT. 27

« eFiflally, ¢ %o %

There
Is
no
End

i

Manik Chand Patnaik, RIT. 28

