
Advanced Data Representation in C Introduction

Advanced Data Representation in C
(Arrays, Structures, Unions and the use of Pointers with them)

Manik Chand Patnaik (M.Tech.)
Lecturer, (C.S.E), Roland Institute of Technology.
Wednesday, November 29 – 2006.

Introduction
We have handled all sorts of variables, integer, long, double, char so on and so forth. These 

data types are called the primitive datatypes in C. Now it is time to deal with some of the advanced 
data representations. These advanced datatypes are derivatives of the primitive datatypes only and 
are not completely new ones.  The datatypes created by using the datatypes already present  as 
primitive datatypes are referred to as derived data types. You should have a clear understanding of 
the datatypes† before we proceed.

Arrays
The first derived datatype in our discussion list is an array. An array is a linear data structure 

which is a collection of data elements of the same datatype each having exactly the same size and 
under a common name. Each data element of the array can be uniquely referenced using its index 
number along with the name of the array.

Generally speaking, arrays are of two types:

1. Unidimensional arrays (also called Linear arrays)
2. Multidimensional arrays

Declaration
Syntax:
<datatype> <arrayname>[<dimension1>][<dimension2>] ... so on..;
e.g. int arr1[10];  will  create a unidimensional array of 10 integer size and int arr2[5][2]; 

would create a two dimensional array of 10 integer size (5 rows and 2 columns matrix).

Referencing each element
Each element of the array is referenced by the array name and the subscript number a.k.a the 

index. The index is the logical dimension-wise offset of the element from the base$. To refer to the 
first element we would write arr1[0] and to refer to the last element we would write arr1[4]. We 
will handle them as our normal variables.

† Here is a quick recap:
Datatypes are of Four types, 
1. Primitive -  Your integer, character, float etc inbuilt data types.
2. Derived -  The array, structure(an aggregate datatype), pointer and function.
3. User Defined -  Alias created by users for existing datatypes.
4. Null -  The empty type.

$ Offset is the concept of distance. How distant is the element from the base of the array. The first element 
would be placed at the base whereas the second element would be at distance 1 from the base. So it is why 
the array index/subscript values start from zero rather than starting from one.

http://manik.in/ Manik Chand Patnaik – Voyage through C   { 1 }



Advanced Data Representation in C Arrays

There is no implementational difference between a uni or multi dimensional array. Both are 
implemented as a linear data structure†, there is no tabular layout although a multidimensional array 
is an array of arrays. The following diagram is enough to show it. When we will handle it with a 
pointer it would be clearer to understand (Refer and relate with the example in Pointer arithmetic). 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] arr1[10]

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] [3][1] [4][0] [4][1] arr2[5][2]

This is the base of the array

You already know from the discussions in the class that array name itself is like a pointer‡ let's 
create a pointer for the array arr2.

Just create a pointer of the same datatype as that of the array and assign as follows:

int arr2[5][2]; /*creating the array*/
int *ptr; /*creating the pointer*/
ptr=arr2; /*assigning the base address of the array*/

This can very well can be written in a single line. 

int arr2[5][2],*ptr=arr2; /*don't put like this int *ptr=arr2,arr2[5][2]; it will tell that  
arr2 is undeclared.*/

I have written them in different lines for clarity sake. The line on assignment of address can 
also can take a different form:

ptr=&arr2[0][0]; /*assigning base address of the first element of the array*/

Both methods are same and bear the same result. Now how do we refer to the elements of 
the array using the pointer? It's  by using dereferencingµ. To point to the first element, the answer is 
obvious, *ptr. Now we can use *ptr to store anything at the first element of the array arr2.

*ptr=20; /*storing 20 at arr2[0][0]. We can directly do it as arr2[0][0]=20; As the 
address of arr2 is stored at ptr which is exactly the same as arr2[0][0]*/

† This is a concept to be understood. There is no actual matrix like data allocation in memory because as I 
always point out, “memory is always linear”. How? It is a series of addresses linked to actual hardware and 
the addresses are a series of unsigned numbers; There is nothing of a tabular fashion. You plug in another 
bank of memory on the motherboard and it will be added up to the current continuing list. You won't 
refer it to memory xyz from bank 2. Got the point?

‡ Array name is not actually a pointer type. There are glaring differences. You cannot use dereferencing by 
putting a star before array name. You cannot assign another address to it because it is a constant not a 
variable like the ordinary pointers. Equally you cannot put subscripts in a pointer to an array to handle the 
array elements like you do with an array name.

µ Dereferencing  uses  the  indirection  operator.  Both  are  the  same  concept  with  two  different  names. 
Indirection as well as dereference is pointing to the value which is stored at the address of the current 
variable. In this case the pointer we are using.

http://manik.in/ Manik Chand Patnaik – Voyage through C   { 2 }



Advanced Data Representation in C Pointer Arithmetic

Pointer Arithmetic
Pointer arithmetic is a very interesting concept. We can add and subtract integer values to a 

pointer. Let's continue with our previous example of arr2. You know that ptr is pointing to the first 
element of the two dimensional array arr2. You can shift the pointing location of ptr to the second 
element by just incrementing the pointer. e.g. ptr++; You can further move it to arr2[2][1] (marked 

by number 3 in diagram) by just adding 4 to it. e.g. ptr+=4;

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] [3][1] [4][0] [4][1] arr2[5][2]

Moving the pointer along the array is called traversal. The traversal along this arr2[5][2] two 
dimensional array is analogous to traversal along a unidimensional 10 element integer array because 
the memory map of a unidimensional 10 element array is analogous with a two dimensional 5X2 or 
2X5 matrix representation of array.

Carefully watch the following block of code:
char str[30],*ptr;
ptr=str; /* pointer assigned to string a.k.a. character array */
printf(“Enter a string :”);
scanf("%[^\n]",str); /* caret-backslash-n to accept characters till enter is pressed */
ptr+=5; /* moving pointer forward 5 places in the string */
printf("%s",ptr); /* See the output carefully and understand it through the diagram*/

/* Output:
abcdefg hijklm nopq <- ptr was pointing to the base of 'a' initially. After moving 5
fg hijklm nopq <- characters ahead it is now pointing to base of 'f'. printf has started 

<- to print the string starting from 'f'. See the similarity of handling of 
<- string and a pointer here along with the pointer arithmetic.

*/

a b c d e f g (space) h i . . . str[30]

Exactly  in the same manner  we can subtract  whole numbers  from pointers  too and the 
arithmetic  operation  will  be  similarly  done  depending  on the  datatype.  For  addition  of  n  the 
pointer will point forward n*sizeof(ptr) bytes and for a subtraction of n, the same number of bytes 
will be referenced backwords.

This is the simplest representation of pointer arithmetic.

http://manik.in/ Manik Chand Patnaik – Voyage through C   { 3 }

1 2 3

Base of 'a' Base of 'f'ptr+=5


	Introduction
	Arrays
	Pointer Arithmetic

